Abstract
Carbohydrate-mediated host-pathogen interactions are essential to bacterial and viral pathogenesis, and represent an attractive target for the development of antiadhesives to prevent infection. We present a versatile microelectrode array-based platform to investigate carbohydrate-mediated protein and bacterial binding, with the objective of developing a generalizable method for screening inhibitors of host-microbe interactions. Microelectrode arrays are well suited for interrogating biological binding events, including proteins and whole-cells, and are amenable to electrochemical derivitization, facilitating rapid deposition of biomolecules. In this study, we achieve microelectrode functionalization with carbohydrates via controlled polymerization of pyrrole to individual microelectrodes, followed by physisorption of neoglycoconjugates to the polypyrrole-coated electrodes. Bioactivity of the immobilized carbohydrates was confirmed with carbohydrate-binding proteins (lectins) detected by both fluorescent and electrochemical means. The platform's ability to analyze whole-cell binding was demonstrated using strains of Escherichia coli and Salmonella enterica, and the dose-dependent inhibition of S. enterica by a soluble carbohydrate antiadhesive.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.