Abstract

We present a model of adaptive regulatory networks consisting of a simple biologically motivated rewiring procedure coupled to an elementary stability criterion. The resulting networks exhibit a characteristic stationary heavy-tailed degree distribution, show complex structural microdynamics, and self-organize to a dynamically critical state. We show analytically that the observed criticality results from the formation and breaking of transient feedback loops during the adaptive process.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.