Abstract
Harmful cyanobacteria and their production of microcystins (MCs) exert significant toxicity on reproduction of fish, especially the process of oogenesis. Our previous studies demonstrated that MCs have negative impacts on the quantity and quality of mature oocytes in female zebrafish. However, the underlying mechanisms of MCs disrupting oocyte maturation (OM) have been rarely reported. In the present study, in vitro oocytes (immature) were separated from zebrafish and treated with 1, 10, 100 μg/L MC-LR. The serine/threonine protein phosphatase 2A (PP2A) activity was downregulated significantly in oocytes exposed to 10 and 100 μg/L MC-LR for both 2 and 4 h. The phosphorylation levels of mitogen-activated protein kinase (MAPK) were detected without noticeable change in all oocytes treated with MC-LR for 2 h, whereas the activated levels of MAPK subtypes (ERK, p38 and JNK) increased remarkably in the 100 μg/L MC-LR treatment of 4 h. In the oocytes exposed to 100 μg/L MC-LR for 4 h, germinal vesicle breakdown (GVBD) rates changed abnormally and maturation-promoting factor (MPF) activity increased significantly, in accordance with the upregulation of Cyclin B protein levels. Moreover, the MAPK inhibitors (10 μM) were applied to explore the role of MAPK subtypes during MC-LR influencing OM and results showed that ERK inhibitor U0126 and p38 inhibitor SB203580 mitigated the effects of 100 μg/L MC-LR-induced MAPK hyper-phosphorylation and elevated GVBD in the oocytes. In conclusion, the present study indicates that microcystins disrupt the meiotic maturation by the pathway of MC-PP2A-MAPK-OM due to the phosphorylation disorder in oocytes.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have