Abstract

Microplastics (MP) remain contaminants of great concern in the ocean because of their abundance, prevalence, and threat to marine organisms. Still, there is a great need for studies on the impact of MP on marine zooplankton. Here, we investigated the effects of polyethylene terephthalate (PET) microfibers (Mf) on the survival, Mf ingestion and retention, predation, and fecal pellets (FP) of the marine amphipod (Cyphocaris challengeri) at environmentally relevant concentrations (0, 10, 100, 1000, 10,000 and 50,000 Mf·L−1) and varied exposure time (24, 48 and 72 h). Our study demonstrated that exposure of C. challengeri to PET Mf did not affect their survival. The average number of ingested Mf and the Mf ingestion rate increased significantly with Mf concentrations. Nonetheless, the Mf ingestion rates by C. challengeri decreased significantly between 24 and 72 h in the two highest Mf treatments (10,000 and 50,000 Mf·L−1), suggesting careful rejection of the Mf or reduced feeding activity. Indeed, PET Mf significantly reduced the copepod feeding rate of the amphipods at Mf concentrations ≥1000 Mf·L−1 after 24 and 48 h of exposure duration. Over time, prey intake reduction in amphipods due to Mf ingestion could affect their reproductive outcome, growth, development, and cellular and ecosystem function. The encapsulation of PET Mf into the FP of C. challengeri significantly increased the FP density and sinking velocities, ultimately doubling the transfer rate of the FP from the surface waters to the sediments in SoG. Conversely, ingesting PET microfibers and their incorporation in FP will potentially enhance the role of C. challengeri in the biological C pump and sequestration in SoG. Our study showed that changes in Mf concentration had a more significant effect on C. challengeri Mf ingestion and ingestion rate, prey consumption, FP density and sinking velocity than the exposure time.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.