Abstract
As one of major types of microplastics (MPs), microfibers (MFs) are widely found in the marine ecosystem and can induce diverse impacts on various marine organisms. Sedentary species, such as mussels, can act as bioindicators for monitoring marine contamination. Hence, in this study, we used mussels (Mytilus galloprovincialis) to examine the toxicity of polyethylene terephthalate (PET) MFs of 100 μm size at concentrations of 0.0005, 0.1, 1, 10, and 100 mg/L for 32 days. PET MFs accumulated only in the stomachs and intestines of the mussels and caused digestive tubule atrophy. After exposure to PET MFs, no alteration in the mortality rate, shell height, length, and weight of the mussels was observed. However, the gonadal index decreased with increasing concentrations of PET MFs. This is because PET MFs decrease the sex hormones estradiol and testosterone in mussels, even at environmentally relevant concentrations. Furthermore, chronic exposure to PET MFs increased the activities of antioxidant-related (catalase and superoxide dismutase) and neurotoxicity-related (acetylcholine esterase) enzymes in the digestive gland and gill tissues of mussels. In addition, cellular immune parameters of apoptosis and DNA damage were observed in mussel hemocytes. Thus, this study demonstrates the risks of MPs in real marine environments by assessing how long-term exposure to low concentrations of PET MFs can cause potential sublethal impacts and reproductive failure in mussels.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.