Abstract
The aim of this study was to demonstrate the feasibility of MR microimaging on a conventional 9.4 T horizontal animal MRI system using commercial available microcoils in combination with only minor modifications to the system, thereby opening this field to a larger community. Commercially available RF microcoils designed for high-resolution NMR spectrometers were used in combination with a custom-made probehead. For this purpose, changes within the transmit chain and modifications to the adjustment routines and image acquisition sequences were made, all without requiring expensive hardware. To investigate the extent to which routine operation and high-resolution imaging is possible, the quality of phantom images was analysed. Surface and solenoidal microcoils were characterized with regard to their sensitive volume and signal-to-noise ratio. In addition, the feasibility of using planar microcoils to achieve high-resolution images of living glioma cells labelled with MnCl(2) was investigated. The setup presented in this work allows routine acquisition of high-quality images with high SNR and isotropic resolutions up to 10μm within an acceptable measurement time. This study demonstrates that MR microscopy can be applied at low cost on animal MR imaging systems, which are in widespread use. The successful imaging of living glioma cells indicates that the technique promises to be a useful tool in biomedical research.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Magnetic Resonance Materials in Physics, Biology and Medicine
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.