Abstract

Simple SummaryThe global crisis of increased mortality rates due to the emergence of antimicrobial resistance and cancers has increased researchers’ efforts to find new, potent solutions through implementing natural products in the pharmaceutical industry. The present investigation produced echinenone (yellowish-orange pigment) from Micrococcus lylae MW407006 with potent pharmacological activities. A response surface methodology statistical design was used to optimize the biomass production, pigment concentration, and antimicrobial activity. The Spearman correlation coefficient was assessed, which indicated a strong linear relationship between biomass production, pigment concentration, and antimicrobial activity. Nano-echinenone was physically synthesized through the ball-milling technique. The synthesized nano-echinenone showed higher pharmacological activities (antimicrobial, antioxidant, and antitumor activities) in comparison with the crude pigment. The significantly high selectivity index of the synthesized nano-echinenone proved its safety and paved the way for its possible use in the pharmaceutical industry.Bacterial pigments (e.g., melanin and carotenoids) are considered to be among the most important secondary metabolites due to their various pharmacological activities against cancer and microbial resistance. Different pigmented bacterial strains were isolated from soil samples from El Mahmoudiyah governance and screened for their antimicrobial activity. The most promising pigment producer was identified as Micrococcus lylae MW407006; furthermore, the produced pigment was identified as echinenone (β-carotene pigment). The pigment production was optimized through a central composite statistical design to maximize the biomass production, pigment concentration, and the antimicrobial activity. It was revealed that the most significant fermentation parameters were the glucose (as a carbon source) and asparagine (as a nitrogen source) concentrations. Nano-echinenone was synthesized using the ball milling technique, characterized, and finally assessed for potential antimicrobial, antioxidant, and antitumor activities. The data revealed that the synthesized nano-echinenone had higher antimicrobial activity than the crude pigment. The cytotoxic potency of echinenone and nano-echinenone was investigated in different cell lines (normal and cancer cells). The inhibition of cell proliferation and induction of cell death was observed in Caco-2 and Hep-G2 cells. The data proved that nano-echinenone is a suitable candidate for use as a safe antimicrobial and anti-hepatocellular-carcinoma agent.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call