Abstract

This study investigates the spatial and temporal impact of microclimate conditions caused by poplar hedgerows in a short rotation alley cropping system (SRACS), and their effect on the atmospheric evaporative demand (AED) and the grain crop yield of winter wheat (Triticum aestivum var. Patras) in direct comparison to a common agricultural crop system. Microclimate was measured at nine positions distributed at the SRACS and an adjacent open field in Brandenburg State (Germany) from March to August 2016. Our hypothesis was that microclimate and AED was improved at SRACS, with traceable effects on the crop yield. The analysis of air temperature and water vapour deficit (VPD) data revealed significantly (p ≤ 0.05) lower daytime values from June to August at the crop alley of the SRACS, which were generally most frequent at the poplar hedgerow and 3 m west positions. By contrast, wind speed was reduced at almost all the positions of our crop alley and during the entire measurement period during both day and night. The AED measured on sampling days in July was significantly (p ≤ 0.001) reduced at the whole crop alley, with values from 24 to 32% in comparison to the open field. We observed a strong linear relationship (R2 ≈ 0.78–0.99) between AED on one side and wind speed and VPD on the other side. The average grain yield within the SRACS was 16% higher than on the OF. However, our microclimate data were insufficient to explain this yield surplus.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call