Abstract

Microspherical particulates have been an attractive form of biomaterials that find usefulness in cell delivery and tissue engineering. A variety of compositions, including bioactive ceramics, degradable polymers, and their composites, have been developed into a microsphere form and have demonstrated the potential to fill defective bone and to populate tissue cells on curved matrices. To enhance the capacity of cell delivery, the conventional solid form of spheres is engineered to have either a porous structure to hold cells or a thin shell to in-situ encapsulate cells within the structure. Microcarriers can also be a potential reservoir system of bioactive molecules that have therapeutic effects in regulating cell behaviors. Due to their specific form, advanced technologies to culture cell-loaded microcarriers are required, such as simple agitation or shaking, spinner flask, and rotating chamber system. Here, we review systematically, from material design to culture technology, the microspherical carriers used for the delivery of cells and tissue engineering, particularly of bone.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.