Abstract
Microfluidic flow focusing is a versatile method for the production of monodisperse microbubbles for biomedical applications involving ultrasound. Existing studies propose several theoretical models to predict bubble size and production rate as a function of the liquid and gas flow rate. Yet, they typically do not include physical fluid parameters such as density, viscosity and surface tension. Here, we present an exhaustive experimental and numerical investigation of the influence of physical properties of the gas and liquid, and of the channel geometry on bubble size and production rate. We find a particularly strong effect of (i) gas density on the production rate and (ii) liquid viscosity on the bubble size. We further discuss our findings within the context of existing theoretical models to reflect on gaps in our current understanding of the fluid mechanics of bubble formation by flow focusing.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.