Abstract

Alternaria solani (Ellis & Martin) Jones & Grout, causing early blight infection in solanaceous crops, is a growing threat influencing sustainable crop production. Understanding the variation in the foliar microbiome, particularly the bacterial community during pathogenesis, can provide critical information on host-pathogen interactions, highlighting the host immune response during pathogen invasion. In the present study, early blight (EB) infection was artificially induced in tomato leaves, and the transition in the foliar bacterial community from healthy leaf tissue to infected leaves was analyzed. The 16s sequencing data revealed a significant shift in alpha and beta diversity, with infected leaf tissue exhibiting considerably lower bacterial abundance and diversity. Further interpretation at the genus level highlighted the possible role of the host immune system in recruiting higher nitrogen-fixing bacteria to resist the pathogen. The study, in addition to analyzing the foliar bacterial community transition during pathogenesis, has also shed light on the possible strategy employed by the host in recruiting selective nutrient-enriching microbes. Further application of this research in developing biocontrol agents with higher microbial host colonizing ability will be of tremendous benefit in achieving sustainable EB control measures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.