Abstract

Chronic endometritis is associated with the imbalance of female reproductive tract microbiota and pathogenic microbial infection. This study aimed to identify the specific changes in the endometrial microbiome in patients with endometritis and to explore how Clostridium tyrobutyricum (C.t) influences the progression of endometritis in mice for further elucidating endometritis pathogenesis. For this purpose, endometrial tissues from 100 participants were collected and divided into positive, weakly positive, and negative groups based on CD138 levels, while endometrial microbiome differences were detected and analyzed using 16S rRNA gene sequencing. Staphylococcus aureus (S. aureus)-induced endometritis mouse model was established, followed by treatment with C.t, and inflammatory response, epithelial barrier, and TLR4/NF-κB pathway were evaluated. Results showed that α- and β-diversity was significantly lower in the positive group compared with the weakly positive or negative groups, where the negative group had more unique operational taxonomic units. The abundance of Proteobacteria was found to be increased, while that of Actinobacteria, Firmicutes, and Bacteroidetes was found to be reduced in the positive group, while the area under the curve value was found to be 0.664. Furthermore, C.t treatment resulted in the alleviation of S. aureus-induced inflammatory response, epithelial barrier damage, and activation of the TLR4/NF-κB pathway in mice. Clinical samples analysis revealed that the diversity and abundance of microbiota were altered in patients with endometritis having positive CD138 levels, while mechanistic investigations revealed C.t alleviated S. aureus-induced endometritis by inactivating TLR4/NF-κB pathway. The findings of this study are envisaged to provide a diagnostic and therapeutic potential of microbiota in endometritis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.