Abstract

Microbiologically influenced corrosion (MIC) has a significant cost to many industries, including naval engineering. In this case-of-study, three tugboats developed pitting corrosion in the carbon steel of the inner hulls. Grade A naval steel was used for the hull sheets but the inner side (corroded) showed only two protective layers of paint. The maintenance employed seawater, which ended up in the bilge and made MIC possible. Bilge’s waters were submitted to physicochemical, biological and molecular tests. DNA analyses confirmed the presence of Pseudomonas spp. and Desulfovibrio spp. in water samples and, consequently, a MIC mechanism was proposed to explain the corrosion process. In addition, a biocide treatment was evaluated and a new maintenance protocol was recommended. This work highlights the importance of the engineering design to prevent MIC in marine transports and provides some guidelines to treat it.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.