Abstract
Cultured meat, which involves growing meat in a laboratory rather than breeding animals, offers potential benefits in terms of sustainability, health, and animal welfare compared to conventional meat production. However, the cultured meat production process involves several stages, each with potential hazards requiring careful monitoring and control. Microbial contamination risks exist in the initial cell collection from source animals and the surrounding environment. During cell proliferation, hazards may include chemical residues from media components such as antibiotics and growth factors, as well as microbial issues from improper bioreactor sterilization. In the differentiation stage where cells become muscle tissue, potential hazards include residues from scaffolding materials, microcarriers, and media components. Final maturation and harvesting stages risk environmental contamination from nonsterile conditions, equipment, or worker handling if proper aseptic conditions are not maintained. This review examines the key microbiological and chemical hazards that must be monitored and controlled during the manufacturing process for cultured meats. It describes some conventional and emerging novel techniques that could be applied for the detection of microbial and chemical hazards in cultured meat. The review also outlines the current evolving regulatory landscape around cultured meat and explains how thorough detection and characterization of microbiological and chemical hazards through advanced analytical techniques can provide crucial data to help develop robust, evidence-based food safety regulations specifically tailored for the cultured meat industry. Implementing new digital food safety methods is recommended for further research on the sensitive and effective detection of microbiological and chemical hazards in cultured meat.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Comprehensive reviews in food science and food safety
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.