Abstract
AbstractBiotransformation of long‐chain fatty acids into medium‐chain α,ω‐dicarboxylic acids or ω‐aminocarboxylic acids could be achieved with biocatalysts. This study presents the production of α,ω‐dicarboxylic acids (e.g., C9, C11, C12, C13) and ω‐aminocarboxylic acids (e.g., C11, C12, C13) directly from fatty acids (e.g., oleic acid, ricinoleic acid, lesquerolic acid) using recombinant Escherichia coli‐based biocatalysts. ω‐Hydroxycarboxylic acids, which were produced from oxidative cleavage of fatty acids via enzymatic reactions involving a fatty acid double bond hydratase, an alcohol dehydrogenase, a Baeyer–Villiger monooxygenase and an esterase, were then oxidized to α,ω‐dicarboxylic acids by alcohol dehydrogenase (ADH, AlkJ) from Pseudomonas putida GPo1 or converted into ω‐aminocarboxylic acids by a serial combination of ADH from P. putida GPo1 and an ω‐transaminase of Silicibacter pomeroyi. The double bonds present in the fatty acids such as ricinoleic acid and lesquerolic acid were reduced by E. coli‐native enzymes during the biotransformations. This study demonstrates that the industrially relevant building blocks (C9 to C13 saturated α,ω‐dicarboxylic acids and ω‐aminocarboxylic acids) can be produced from renewable fatty acids using biocatalysis.magnified image
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have