Abstract

Increasing the nitrogen-utilization efficiency (NUE) of dairy cows by breeding selection would offer advantages from nutritional, environmental, and economic perspectives. Because data collection of NUE phenotypes is not feasible in large cow cohorts, the cow individual milk urea concentration (MU) has been suggested as an indicator trait. Considering the symbiotic interplay between dairy cows and their rumen microbiome, individual MU was thought to be influenced by host genetics and by the rumen microbiome, the latter in turn being partly attributed to host genetics. To enhance our knowledge of MU as an indicator trait for NUE, we aimed to identify differential abundant rumen microbial genera between Holstein cows with divergent genomic breeding values for MU (GBVMU; GBVHMU vs. GBVLMU, where H and L indicate high and low MU phenotypes, respectively). The microbial genera identified were further investigated for their correlations with MU and 7 additional NUE-associated traits in urine, milk, and feces in 358 lactating Holsteins. Statistical analysis of microbial 16S rRNA amplicon sequencing data revealed significantly higher abundances of the ureolytic genus Succinivibrionaceae UCG-002 in GBVLMU cows, whereas GBVHMU animals hosted higher abundances of Clostridia unclassified and Desulfovibrio. The entire discriminating ruminal signature of 24 microbial taxa included a further 3 genera of the Lachnospiraceae family that revealed significant correlations to MU values and were therefore proposed as considerable players in the GBVMU-microbiome-MU axis. The significant correlations of Prevotellaceae UCG-003, Anaerovibrio, Blautia, and Butyrivibrio abundances with MU measurements, milk nitrogen, and N content in feces suggested their contribution to genetically determined N-utilization in Holstein cows. The microbial genera identified might be considered for future breeding programs to enhance NUE in dairy herds.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.