Abstract
Biotransformation stereoselectivity of warfarin was studied in the fungus Cunninghamella elegans (ATCC 36112) as a model of mammalian metabolism. This organism was previously shown to produce all known phenolic mammalian metabolites of warfarin, including 6-, 7-, 8-, and 4'-hydroxywarfarin, and the previously unreported 3'-hydroxywarfarin, as well as the diastereomeric warfarin alcohols, warfarin diketone, and aliphatic hydroxywarfarins. Using S-warfarin and R-warfarin as substrates, and an HPLC assay with fluorescence detection to analyze metabolite profiles, the biotransformation of warfarin was found to be highly substrate and product stereoselective. Both aromatic hydroxylation and ketone reduction were found to be stereoselective for R-warfarin. Ketone reduction with the warfarin enantiomers exhibited a high level of product stereoselectivity in that R-warfarin was predominantly reduced to its S-alcohol, while S-warfarin was reduced primarily to the corresponding R-alcohol.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.