Abstract
Developing efficient landfill leachate treatment is still necessary to reduce environmental risks. However, nitrogen removal in biological treatment systems is often poor or costly. Studying biofilms in anoxic/aerobic zones of rotating biological contactors (RBC) can elucidate how microbial interactions confer resistance to shock loads and toxic substances in leachate treatment. This study assessed the nitritation-anammox performance in an intermittent-rotating bench-scale RBC treating mature leachate (diluted). Despite the leachate toxicity, the system achieved nitritation with an efficiency of up to 34 % under DO values between 0.8 and 1.8 mg.L−1. The highest average ammoniacal nitrogen removal was 45.3 % with 10 h of HRT. The 16S rRNA sequencing confirmed the presence of Nitrosonomas, Aquamicrobium, Gemmata, and Plantomyces. The coexistence of these bacteria corroborated the selective pressure exerted by leachate in the community structure. The microbial interactions found here highlight the potential application of RBC to remove nitrogen in landfill leachate treatment.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have