Abstract

Aspirin is one of the emerging pharmaceutical contaminants in the aquatic environment and thus it could impart toxicity to non-target organisms including fish. The present study aims to investigate the biochemical and histopathological alterations in the liver of the fish, Labeo rohita exposed to environmentally relevant concentrations of aspirin (1, 10, and 100 μg/L) for 7, 14, 21, and 28 days. The biochemical investigation revealed a significant (p < 0.05) decrease in the activity of antioxidant enzymes such as catalase, glutathione peroxidase, glutathione reductase; and reduced glutathione content in a concentration and duration dependent manner. Further, the decrease in the activity of superoxide dismutase was in a dose dependent manner. The activity of glutathione-s-transferase, however, increased significantly (p < 0.05) in a dose dependent manner. The lipid peroxidation and total nitrate content showed a significant (p < 0.05) increase in a dose and duration dependent manner. The metabolic enzymes such as acid phosphatase, alkaline phosphatase, and lactate dehydrogenase showed a significant (p < 0.05) increase in all three exposure concentrations and durations. The histopathological alterations in the liver such as vacuolization, hypertrophy of the hepatocytes, nuclear degenerative changes, and bile stagnosis increased in a dose and duration dependent manner. Hence, the present study concludes aspirin has a toxic impact on fish, which is evidenced by its profound effect on biochemical parameters and histopathological analysis. These can be employed as potential indicators of pharmaceutical toxicity in the field of environmental biomonitoring.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call