Abstract
Water quality deterioration caused by a wide variety of recalcitrant organics and pathogenic microorganisms has become a serious concern worldwide. Bio-electro-Fenton systems have been considered as cost-effective and highly efficient water treatment platform technology. While it has been extensively studied for recalcitrant organics removal, its application potential towards water disinfection (e.g., inactivation of pathogens) is still unknown. This study investigated the inactivation of Escherichia coli in a microbial electrolysis cell based bio-electro-Fenton system (renamed as microbial electrolytic-Fenton cell) with the aim to broad the application of microbial electrochemistry. Results showed that a 4-log reduction of Escherichia coli (107 to hundreds CFU/mL) was achieved with an external applied voltage of 0.2 V, 0.3 mM Fe2+ and cathodic pH of 3.0. However, non-notable inactivation was observed in the control experiments without external voltage or Fe2+ dose. The disinfection effect was enhanced when cathode air flow rate increased from 7 to 41 mL/min and was also in proportion to the increase of Fe2+ concentration from 0.15 to 0.45 mmol/mL. Fatal cell membrane destruction by OH was identified as one potential mechanism for disinfection. This study successfully demonstrated the feasibility of bio-electro-Fenton process for pathogens inactivation, which offers insight for the future development of sustainable, efficient, and cost-effective biological water treatment technology.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.