Abstract
Sustainable and cost-effective semiconducting photocathodes of microbial electrolysis cells (MECs) are attractively promising for efficient treatment of actual industrial wastewaters containing complex recalcitrant organics and multiple heavy metals. Herein carbon dots/graphitic carbon nitride (CDs/g-C3N4) photocathodes were employed to achieve efficient treatment of actual etching terminal wastewater (ETW) with simultaneous H2 production in MECs, allowing the effluent meeting national discharge standards (GB39731–2020). The progressively in-situ deposited heavy metals on the CDs/g-C3N4 photocathodes, formed as metal oxides/CDs/g-C3N4 after simple calcinations, further enhanced the ETW treatment (recalcitrant organics mineralization: 42.2 mg/L/h vs. 35.5 mg/L/h; heavy metal removal: Cu(II): 9.9 mg/L/h vs. 7.4 mg/L/h, Ni(II): 4.7 mg/L/h vs. 3.5 mg/L/h, Zn(II): 0.7 mg/L/h vs. 0.5 mg/L/h) and H2 production (0.1138 m3/m3/d vs. 0.0662 m3/m3/d). The importation of heavy metals, formed as metal oxides/CDs/g-C3N4 altered the proportion of reactive oxidative species and thus promoted mineralization of recalcitrant organics, besides offering additional electrochemical removal of heavy metals with simultaneous more H2 production. This study demonstrates a new feasible protocol for achieving efficient ETW treatment, and gives a comprehensive appreciation of the effect of in-situ deposited heavy metals on the CDs/g-C3N4 photocathodes, which has a profound effect on subsequent ETW treatment with simultaneous H2 production.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.