Abstract
AbstractTwo different types of biochemical oxygen demand (BOD) sensors using microbial electrodes were prepared. First, a microbial electrode using the bacteria–collagen membrane and oxygen electrode was used for the determination of BOD. When the electrode was inserted in a sample solution containing glucose and glutamic acid (model waste water), the current of the electrode decreased markedly with time until a steady state was reached. A linear relationship was observed between the steady state current and the concentration of the standard solution containing glucose–glutamic acid or the BOD of the solution. The BOD of industrial waste waters can be estimated within 15 min by using the microbial electrode. No decrease in current output was observed over a ten day period. The reproducibility was determined using the same sample (10% of the standard solution) and was found to be 26.2 ± 2.0 μA (7.5% of the relative standard deviation). Next, a biofuel cell utilizing microbial electrode (immobilized Clostridium butyricum–platinum electrode) was applied to the estimation of the BOD of waste waters. The current of the biofuel cell was decreased markedly with time until a steady state was reached. The steady state current was in all cases attained within 30–40 min at 37°C. A linear relationship was obtained between the steady state current and BOD. The BOD of industrial waste waters can be estimated by using the biofuel cell. Relative error of the BOD estimation was within ±10%. The current output of the biofuel cell was almost constant for 30 days.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.