Abstract
The physicochemical analyses of pulp-paper mill effluent revealed that it was dark brown with 1761 ± 2.3 color PtCo units having slightly alkaline pH, high biological oxygen demand and chemical oxygen demand values, and contained large quantities of organic and inorganic constituents, well above the prescribed standards. The bacterial growth, color reduction, and dechlorination were evident in all the four sets of experiments with different possible combinations of nutrient supplementation and Pseudomonas putida augmentation. A high degree of decolorization at 29.7% and 27.4% was observed by the effluent native microflora during 48 and 24 h, in unaugmented effluent supplemented with glucose + yeast extract and glucose + peptone, respectively. The extent of decolorization in glucose + yeast extract unaugmented effluent also corresponded with high degree of dechlorination (59.3%) during 60-h incubation (SET III). An appreciable level of growth, decolorization, and dechlorination was evident in nutrient unsupplemented P. putida augmented effluent as well as in the control natural effluent. However, a maximum level of growth response (OD 1.641-1.902) during 36-48 h, removal of color (39.72-48.2%) during 24-36 h, and chloride ions (80.1-83.5%) during 36 h was achieved in P. putida augmented effluent supplemented with glucose + yeast extract or peptone. Therefore, supplementation of effluent with glucose and yeast extract or peptone and concomitant augmentation with P. putida is required for efficient effluent decolorization and detoxification.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have