Abstract

In order to investigate microbial community structures in different wastewater treatment processes and understand the relationship between the structures and the status of processes, the microbial community diversity, variety and distribution in five wastewater treatment processes were studied by a culture-independent genetic fingerprinting technique single-strand conformation polymorphism (SSCP). The five processes included denitrifying and phosphate-removal system (diminished N), Chinese traditional medicine wastewater treatment system (P), beer wastewater treatment system (W), fermentative biohydrogen-producing system (H), and sulfate-reduction system (S). The results indicated that the microbial community profiles in the wastewater bioreactors with the uniform status were very similar. The diversity of microbial populations was correlated with the complexity of organic contaminants in wastewater. Chinese traditional medicine wastewater contained more complex organic components; hence, the population diversity was higher than that of simple nutrient bioreactors fed with molasses wastewater. Compared with the strain bands in a simulated community, the relative proportion of some functional microbial populations in bioreactors was not dominant. Fermentative biohydrogen producer Ethanoligenens harbinense in the better condition bioreactor had only a 5% band density, and the Desulfovibrio sp. in the sulfate-reducing bioreactor had less than 1.5% band density. The SSCP profiles could identify the difference in microbial community structures in wastewater treatment processes, monitor some of the functional microbes in these processes, and consequently provide useful guidance for improving their efficiency.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call