Abstract

Olive Mill Wastewater (OMW) is a polluting residue from the olive oil industry. It is usually stored in open-air unprotected evaporation ponds where their sediments accumulate. This study compares the characteristics of OMW sludges stored for long-time in evaporation ponds and assesses their impact on the underlying soil layer. Physicochemical parameters, toxicity bioassays, and full characterization of the microbial community were analyzed. The extension of the polluting effects was assessed by analysis of toxicity, microbial biomass carbon, and respiration. Geostatistics was used to predict their spatial distribution. Organic matter and polyphenol content besides toxicity levels determine variations between OMW sludges and have a high impact on the microbiota they contain. The microbial community was abundant, diverse, and functionally active. However, the biodegradability of the sludges was hindered by the toxicity levels. Toxicity and biomass carbon were higher on the surface of the ponds than in the soil layer revealing a reduced leach flow and depletion of contaminants. The natural microbiota might be biostimulated by means of applying sustainable and feasible biological treatments in order to favor the OMW sludges bioremediation. These results open up the possibility of solving the environmental concern caused by its storage in similar scenarios, which are common in olive oil-producing countries.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.