Abstract
The distribution of microbial communities in the Menggulin (MGL) and Ba19 blocks in the Huabei Oilfield, China, were studied based on 16S rRNA gene analysis. The dominant microbes showed obvious block-specific characteristics, and the two blocks had substantially different bacterial and archaeal communities. In the moderate-temperature MGL block, the bacteria were mainly Epsilonproteobacteria and Alphaproteobacteria, and the archaea were methanogens belonging to Methanolinea, Methanothermobacter, Methanosaeta, and Methanocella. However, in the high-temperature Ba19 block, the predominant bacteria were Gammaproteobacteria, and the predominant archaea were Methanothermobacter and Methanosaeta. In spite of shared taxa in the blocks, differences among wells in the same block were obvious, especially for bacterial communities in the MGL block. Compared to the bacterial communities, the archaeal communities were much more conserved within blocks and were not affected by the variation in the bacterial communities.
Highlights
Due to increasing energy demand and depletion of oil reserves, the development of alternative enhanced oil recovery (EOR) techniques in place of water flooding is gaining increased attention to enhance oil productivity and recovery efficiency
The injection water from the MGL block had a higher pH than production water from the same block, while the opposite pattern occurred for the Ba19 block
By culture-independent methods, diverse bacteria as well as archaea were detected in these oil reservoirs
Summary
Due to increasing energy demand and depletion of oil reserves, the development of alternative enhanced oil recovery (EOR) techniques in place of water flooding is gaining increased attention to enhance oil productivity and recovery efficiency. Among these so-called tertiary recovery techniques, microbial enhanced oil recovery (MEOR) is considered to be much more economically feasible due to its low energy consumption, low environmental impact, and cost-effectiveness [1]. The MEOR technique can be classified as two types: single-well huff-and-puff and ‘‘microbial flooding’’ In both cases, microbial communities are stimulated to degrade petroleum constituents, producing biosurfactants, gases, and other by-products that increase the crude oil fluidity. The microbial community can be influenced by characteristics of the reservoir, the working layer, the oil composition, as well as the injection water
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.