Abstract

AbstractSalar de Atacama is one of the largest global reservoirs of natural lithium brines (mean lithium concentration = 1,500 ppm), enabling Chile to be a leading producer of lithium products. This large salar (3,000 km2), located in the Atacama Desert at 2,300 m above sea level, is dominated by microorganisms; however, little is known about the microbes present in the brines associated with this economically important mining process. Here we study lithium as a modulator of microbial richness and diversity in brines representing natural conditions (34.7% salinity) and conditions prior to lithium production with a concentrated brine (55.6% salinity). Brines only supported a single archaeal family (Halobacteriaceae): natural brines included the archaeal genera Halovenus, Natronomonas, Haloarcula, and Halobacterium. Concentrated brines included the archaeal genera Halovenus, Halobacterium, and Halococcus. The most abundant bacterial families in natural brine were Rhodothermaceae and Staphylococcaceae; Xanthomonadaceae dominated the bacterial community in the concentrated brine. A comparison of entire microbial community (Archaea and Bacteria) revealed that only seven operational taxonomic units were shared between samples, all of which were Archaea. Further, our results showed that Bacteria were phylogenetically more diverse and rich in the concentrated brine, while archaeal diversity was maximized in the natural brine. The concentrated lithium brines of the Salar de Atacama represent one of the most saline environments described to date (dominated by LiCl). We suggest that elevated concentrations of lithium could greatly modulate microbial diversity and give insights into the adaptive biology of microorganisms required to cope with extremely high concentrations of salts that extend beyond that of NaCl, a far more commonly studied salt.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.