Abstract

The effect of environmental fluctuations is a major question in ecology. While it is widely accepted that fluctuations and other types of disturbances can increase biodiversity, there are fewer examples of other types of outcomes in a fluctuating environment. Here we explore this question with laboratory microcosms, using cocultures of two bacterial species, P. putida and P. veronii. At low dilution rates we observe competitive exclusion of P. veronii, whereas at high dilution rates we observe competitive exclusion of P. putida. When the dilution rate alternates between high and low, we do not observe coexistence between the species, but rather alternative stable states, in which only one species survives and initial species' fractions determine the identity of the surviving species. The Lotka-Volterra model with a fluctuating mortality rate predicts that this outcome is independent of the timing of the fluctuations, and that the time-averaged mortality would also lead to alternative stable states, a prediction that we confirm experimentally. Other pairs of species can coexist in a fluctuating environment, and again consistent with the model we observe coexistence in the time-averaged dilution rate. We find a similar time-averaging result holds in a three-species community, highlighting that simple linear models can in some cases provide powerful insight into how communities will respond to environmental fluctuations.

Highlights

  • In nature, environmental conditions vary over time, and this variation can have significant impacts on the structure and function of ecological communities

  • The effect of environmental fluctuations on community structure and function is a fundamental question in ecology

  • A significant body of work suggests that fluctuations increase diversity due to a variety of proposed mechanisms

Read more

Summary

Introduction

Environmental conditions vary over time, and this variation can have significant impacts on the structure and function of ecological communities. Examples of the impacts of environmental variability on community composition include daily cycles of light and temperature that allow nocturnal and diurnal organisms to coexist, and seasonal variation that causes reproducible succession patterns in communities of plants [1], freshwater [2] and marine microbes [3]. Community function can be strongly influenced by varying environmental conditions. Varying environmental conditions may even cause ecosystems to abruptly and irreversibly change states, such as lakes that shift from clear to turbid due to human-induced eutrophication [6] and reefs that transform from kelp forests to seaweed turfs due to heat waves [7]. Given the inevitability of temporal variability in nature, an improved understanding of how this variability affects ecological communities is essential for understanding natural ecosystems

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call