Abstract

Bioaccumulation of the neurotoxin methylmercury (MeHg) in rice has raised worldwide concerns because of its risks to human health. Certain microorganisms are able to degrade MeHg in pure cultures, but the roles and diversities of the microbial communities in MeHg degradation in rice paddy soils are unknown. Using a series of microcosms, we investigated MeHg degradation in paddy soils from Hunan, Guizhou, and Hubei provinces, representing three major rice production regions in China, and further characterized one of the soils from the Hunan Province for microbial communities associated with MeHg degradation. Microbial demethylation was observed in all three soils, demonstrated by significantly more MeHg degraded in the unsterilized soils than in the sterilized controls. More demethylation occurred in water-saturated soils than in unsaturated soils, but the addition of molybdate and bromoethanesulfonic acid as the respective inhibitors of sulfate reducing bacteria and methanogens showed insignificant effects on MeHg degradation. However, the addition of Cu enhanced MeHg degradation and the enrichment of Xanthomonadaceae in the unsaturated soil. 16S rRNA Illumina sequencing and metatranscriptomic analyses of the Hunan soil consistently revealed that Catenulisporaceae, Frankiaceae, Mycobacteriaceae, and Thermomonosporaceae were among the most likely microbial taxa in influencing MeHg degradation in the paddy soil, and they were confirmed by combined analyses of the co-occurrence network, random forest modeling, and linear discriminant analysis of the effect size. Our results shed additional light onto the roles of microbial communities in MeHg degradation in paddy soils and its subsequent bioaccumulation in rice grains.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.