Abstract

Lilliput was discovered in 2005 as the southernmost known hydrothermal field along the Mid-Atlantic Ridge. It is exceptional in that it lacks high-temperature venting probably because of a thickened crust. The absence of thermophilic and hyperthermophilic prokaryotes in emissions supports the argument against the presence of a hot subsurface at Lilliput, as is typically suggested for diffuse emissions from areas of high-temperature venting. The high phylogenetic diversity and novelty of bacteria observed could be because of the low-temperature influence, the distinct location of the hydrothermal field or the Bathymodiolus assemblages covering the sites of discharge. The low-temperature fluids at the Lilliput are characterized by lowered pH and slightly elevated hydrogen (16 nM) and methane ( approximately 2.6 microM) contents compared with ambient seawater. No typical hydrogen and methane oxidizing prokaryotes were detected. The higher diversity of reverse tricarboxylic acid genes and the form II RubisCO genes of the Calvin Benson-Bassham (CBB) cycle compared with the form I RubisCO genes of the CBB cycle suggests that the chemoautotrophic community is better adapted to low oxygen concentrations. Thiomicrospira spp. and Epsilonproteobacteria dominated the autotrophic community. Sulfide is the most abundant inorganic energy source (0.5 mM). Diverse bacteria were associated with sulfur cycling, including Gamma-, Delta- and Epsilonproteobacteria, with the latter being the most abundant bacteria according to fluorescence in situ hybridization. With members of various Candidate Divisions constituting for 25% of clone library sequences we suggest that their role in vent ecosystems might be more important than previously assumed and propose potential mechanisms they might be involved in at the Lilliput hydrothermal field.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.