Abstract

Osteoclasts play a crucial role in bone destruction in rheumatoid arthritis (RA). This study aimed to investigate the inhibitory effects of chaperonin 60 (CPN60), identified in the surface proteins of Propionibacterium freudenreichii MJ2, on receptor activator of nuclear factor kappa-B ligand (RANKL)-induced osteoclast differentiation, and elucidate the underlying mechanisms. Treatment with CPN60 inhibited RANKL-induced osteoclast differentiation by decreasing the expression of osteoclast differentiation-related genes and proteins. CPN60 interfered with the binding of RANKL to RANK, as elucidated using surface plasmon resonance (SPR) and immunofluorescence. In silico molecular docking analysis further supported the interference of CPN60 with the binding of RANKL and RANK. CPN60 suppressed the expression of molecules linked to the calcium-dependent pathway in RANKL-induced osteoclast differentiation at both mRNA and protein levels. Microarray analysis showed elevated expression of lipocalin 2 (Lcn2), which was closely linked to the inhibition of osteoclast differentiation in CPN60-treated RAW 264.7 cells. Inhibition of Lcn2 decreased the inhibitory effect of CPN60 on osteoclast differentiation, indicating that increased expression of Lcn2 by CPN60 contributes to the inhibition of osteoclastogenesis. In addition, CPN60 treatment alleviated arthritis symptoms in collagen-induced arthritis mice by reducing the generation of collagen-specific antibodies and inhibiting osteoclast differentiation. In conclusion, CPN60 of P. freudenreichii MJ2 interfered with RANKL–RANK binding, reduced the expression of genes and proteins related to osteoclast differentiation and upregulated Lcn2 expression, thereby inhibiting RANKL-induced osteoclast differentiation, which might contribute to ameliorate collagen-induced arthritis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.