Abstract
Environmental pollution caused by polycyclic aromatic hydrocarbons (PAHs) jeopardizes nature. PAHs are the most toxic, mutagenic, and carcinogenic pollutants and their cleanup is important for the environment. In the current research, to assess and evaluate three remediation strategies for pyrene removal from the soil, a pot experiment was performed: (a) bioremediation withPseudomonas aeruginosaandAspergillus oryzae, (b) phytoremediation with sunflower (Helianthus annuus) and alfalfa (Medicago sativaL.) and (c) microbial-assisted phytoremediation for the treatment of pyrene (700mgkg-1). Results depict that P. aeruginosa significantly promoted the growth and tolerance of taken plants and reduced pyrene concentration in soil. Compared with those planted in pyrene-contaminated soil without inoculation. The highest percentage of pyrene removal was observed in P. aeruginosa inoculated alfalfa (91%), alfalfa inoculated with A. oryzae (83.96%), and without inoculation (78.20%). Moreover, alfalfa planted in P. aeruginosa augmented soil had the highest dehydrogenase activity (37.83μg TPF g-1 soil h-1), and fluorescein diacetate hydrolysis (91.67μg fluorescein g-1 dry soil). DHA and FDA are the indicators of bioaugmentation influence on the indigenous microbial activity of contaminated soil. As a result of the findings, the rhizospheric association of plants and microbes is beneficial for pyrene removal. Therefore, P. aeruginosa-assisted phytodegradation might be a more successful remediation technique for pyrene-contaminated soil than bioremediation and phytodegradation solely.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have