Abstract

Antibacterial properties of toothpastes enable chemical plaque control in limited‐access tooth regions that are mechanically not sufficiently reached by toothbrushes. Therefore, this study aimed to compare different microbial methods to assess antimicrobial toothpaste properties and evaluate different toothpastes in terms of their antibacterial efficacy against different oral microorganisms in an in vitro setting. Six toothpaste suspensions with varying antibacterial supplements were applied to a multispecies biofilm model (Actinomyces oris, Candida albicans, Fusobacterium nucleatum, Streptococcus oralis, and Streptococcus mutans) as well as to each microorganism. A culture method was used to assess the anti‐biofilm effects and two different agar diffusion assays were performed for testing the antimicrobial effect on each microorganism. The measurements of the culture and diffusion analyses were statistically normalized and compared and toothpastes were ranked according to their antimicrobial efficacy. The results of both agar diffusion assays showed a high correlation across all tested species (Spearman correlation coefficients ρ s > 0.95). The results of the multispecies biofilm model, however, substantially differed in its assessment of antibacterial properties (ρ s ranging from 0.22 to 0.87) compared to the results of both diffusion assays. Toothpastes with amine fluoride (with and without stannous fluoride), and toothpastes with triclosan resulted in the highest antimicrobial efficacy. Activated carbon supplements in toothpastes were comparable in their antimicrobial action to the negative control NaCl. The appropriate selection of a broad range of oral microorganisms seems crucial when testing the chemical impact of toothpaste and toothpaste supplements.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.