Abstract

Simple SummaryMastitis is among the diseases in dairy cows that most often require antibiotic treatment. In order to maintain optimal treatment, it is important to have updated knowledge about the causative agents and their antibiotic resistance patterns. This investigation aimed to reveal the most important bacterial pathogens and their resistance patterns in Sweden, and we also identified some risk factors for infection with certain pathogens. The bacteria that were the most common causes of mastitis were, in descending order, Staphylococcus aureus, Streptococcus dysgalactiae, Escherichia coli, and Streptococcus uberis. Only a few Gram-positive bacteria were resistant to penicillin, and in general, the occurrence of antibiotic resistance was low. Therefore, the potential for antibiotic treatment of bovine mastitis in Sweden is good.Mastitis is one of the most important infectious diseases and one of the diseases that causes the greatest use of antibiotics in dairy cows. Therefore, updated information on the bacteria that cause mastitis and their antibiotic susceptibility properties is important. Here, for the first time in over 10 years, we updated the bacterial findings in clinical mastitis in Swedish dairy cows together with their antibiotic resistance patterns and risk factors for each bacterial species. During the period 2013–2018, samples from clinical mastitis were collected, together with information on the cows and herds of origin. The samples were cultured, and a total of 664 recovered bacterial isolates were subjected to susceptibility testing. Staphylococcus aureus (S. aureus) was the most common pathogen and accounted for 27.8% of diagnoses, followed by Streptococcus dysgalactiae (S. dysgalactiae) (15.8%), Escherichia coli (E. coli) (15.1%), Streptococcus uberis (S. uberis) (11.4%), Trueperella pyogenes (T. pyogenes) (7.7%), non-aureus staphylococci (NAS) (2.8%), Klebsiella spp. (2.7%), Enterococcus spp. (1.3%), and Streptococcus agalactiae (S. agalactiae) (1.2%). Various other bacteria accounted for 2.6%. Staphylococci were, in general, susceptible to most antibiotics, but 2.6% of S. aureus and 30.4% of NAS were resistant to penicillin. No methicillin-resistant staphylococci were found. All S. agalactiae were susceptible to penicillin. Bimodal and trimodal MIC distributions for penicillin in S. dysgalactiae and S. uberis, respectively, indicate acquired reduced susceptibility in some isolates. The mostly unimodal MIC distributions of T. pyogenes indicate that acquired resistance does usually not occur in this species. Among E. coli, 14.7% were resistant to at least one antibiotic, most often ampicillin (8.7%), streptomycin (7.8%), or sulphamethoxazole (6.9%). Klebsiella spp. had low resistance to tetracycline (9.1%) but is considered intrinsically resistant to ampicillin. Pathogen-specific risk factors were investigated using multivariable models. Staphylococcus aureus, S. dysgalactiae, and T. pyogenes were more common, while E. coli was less common in quarters with more than one pathogen. S. aureus and T. pyogenes were mostly seen in early lactation, while E. coli was more common in peak to mid lactation and S. dysgalactiae in early to peak lactation. Trueperella pyogenes and Klebsiella spp. were associated with a previous case of clinical mastitis in the current lactation. Staphylococcus aureus was associated with tie stalls and T. pyogenes with loose housing. All pathogens except E. coli and S. dysgalactiae had a seasonal distribution. In conclusion, the aetiological agents for clinical bovine mastitis have remained relatively stable over the last 10–15 years, S. aureus, S. dysgalactiae, E. coli and S. uberis being the most important. Resistance to penicillin among Gram-positive agents was low, and in general, antibiotic resistance to other compounds was low among both Gram-positive and Gram-negative agents.

Highlights

  • Mastitis is one of the most important infectious diseases in dairy herds [1].The majority of clinical cases are caused by a limited number of specific pathogens, but a very large array of bacterial species may infect the udder

  • The following data about the cow and the herd were registered: breed of the cow, udder quarter, lactation number, udder disease score based on cow somatic cell count (SCC) at the last three milk recordings [10], the result of California Mastitis Test (CMT; scored 1–5 where 1 = negative and 5 = strong gel formation), date of latest calving, if the cow had experienced another case of clinical mastitis during the current lactation, if she had been treated with antibiotics during the preceding 30 days or at drying off, the main housing system used in the herd, and if automatic milking systems (AMS) were used

  • There are several reasons for no growth in clinical mastitis samples; it has, for example, been suggested that some cases are due to E. coli infections that have been cleared by the cow’s immune system [32] and that the freezing of milk samples may have a negative effect on the survival and growth of certain bacteria such as E. coli but not S. aureus [33]

Read more

Summary

Introduction

Mastitis is one of the most important infectious diseases in dairy herds [1].The majority of clinical cases are caused by a limited number of specific pathogens, but a very large array of bacterial species may infect the udder. Sustaining the efficacy of antibiotics is very important for dairy cow welfare and herd economics. Acquired antibiotic resistance in bacteria is, an increasing threat, and surveillance of antibiotic susceptibility of bacteria, including mastitis-causing pathogens, is recommended by the World Organisation for Animal Health (OIE) and several other organisations [3,4]. Results of such monitoring will guide therapeutic decisions and show possible trends, indicating a possible need for interventions regarding antibiotic use [4]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call