Abstract

Nitrogen availability is a key factor that regulates soil priming (the strong short-term changes in microbial decomposition of soil organic carbon after addition of fresh carbon resources); however, how soil priming changes under nitrogen addition is unclear. In this study, we collected soils from a grassland with 11-year history of nitrogen addition (0, 60, 120, and 240 kg N ha−1 yr−1 NH4NO3), and the soils were incubated for 6 weeks to estimate the direction and magnitude of soil priming and the underlying microbial carbon use strategy. We found glucose addition triggered a positive priming effect among all the treatments; however, the magnitude of the positive priming did not change under nitrogen addition. The stable soil organic carbon content under different nitrogen addition levels might support the no significant change in the magnitude of those positive priming. Using DNA stable-isotope probing (DNA-SIP), we found that bacterial and fungal taxa consuming the added glucose were different in different nitrogen addition levels. The relative abundance of the K-strategist Acidobacteria increased with increasing nitrogen addition levels, while the r-strategist Firmicutes decreased with increasing nitrogen addition levels. Our results indicated microbial taxa exhibited carbon use plasticity, with most taxa altering their use of glucose under nitrogen addition.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call