Abstract
In nature, microbes are involved in weathering of rocks, in mobilization of metals from minerals, and in metal precipitation and deposition. These microbiological principles and processes can be adapted to treat particulate solid wastes. Especially the microbiological solubilization of metals from solid minerals (termed bioleaching) to obtain metal values is a well-known technique in the mining industry. We focus here on non-mining mineral wastes to demonstrate the applicability of mining-based technologies for the treatment of metal-containing solid wastes. In the case study presented, microbial metal mobilization from particulate fly ash (originating from municipal solid waste incineration) by Acidithiobacilli resulted in cadmium, copper, and zinc mobilization of >80%, whereas lead, chromium, and nickel were mobilized by 2, 11 and 32%, respectively. In addition, the potential of HCN-forming bacteria ( Chromobacterium violaceum, Pseudomonas fluorescens) was investigated to mobilize metals when grown in the presence of solid materials (e.g., copper-containing ores, electronic scrap, spent automobile catalytic converters). C. violaceum was found capable of mobilizing nickel as tetracyanonickelate from fine-grained nickel powder. Gold was microbially solubilized as dicyanoaurate from electronic waste. Additionally, cyanide-complexed copper was detected during biological treatment of shredded printed circuit-board scraps. Water-soluble copper and platinum cyanide were also detected during the treatment of spent automobile catalytic converters.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.