Abstract

This work is designed to counteract the deficiency of targeted research on the PAHs polluted specific soil, especially when the chemicals extremely denatured it. Phenanthrene-contaminated red soil was treated through two-stage process: persulfate oxidation (on dosages of 3.48%, 5.21%, and 6.94%, combined with Fe2+ and β-cyclodextrin, then heated) followed by biodegradation (indigenous bacteria vs. acid-resistant PAHs-degrading microflora (named ADM)) for 90days. The dosage of oxidant greatly affected the removal efficiencies, which ranged from 46.78 to 85.34% under different treatment. After undergoing oxidation, the soil pH dropped below 3.0 synchronously and retained relatively strong oxidation state. The indigenous bacteria in red soil showed considerable degradation potential that will not vanish upon the sudden change of soil properties, whose average combined removal reached 95.43%, even higher than subgroups of bioaugmentation, but the population structure showed extremely simplex (Proteobacteria as superior occupied proportion of 91.77% after 90-day rehabilitation). The ADM screened from the coking wastewater was dominated by Klebsiella (75.4%) and Pseudomonas (23.6%), whose cooperation with 6.94% persulfate made the residual PHE reduced to less than 50mg·kg-1 in about 28days. High-throughput sequencing analysis showed that the microbial community composition of the ADM applied-group was more abundant in the later stage of remediation. ADM inoculation has the advantages of shortening the restoration period and having a positive impact on the soil micro-ecology.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call