Abstract

Escherichia coli K12 strain (J5-3/RP4) persisted in sandy loam for more than 70 days when incubated at 10°C or 4°C. It decreased to below the level of detection within 20 days when incubated at 25°C. No loss of multi-resistance plasmid RP4 from the E. coli cells was detected during incubation in soil. There was a positive relation between the bacterial inoculum size and the following increase of the protozoan numbers in the soil. When soil microcosms were amended with an eukaryotic inhibitor, the period of survival was increased. These observations indicate a direct involvement of protozoa in the decline of E. coli in soil. Transfer of plasmid RP4 from E. coli donor bacteria to indigenous bacteria in soil was detected already 24 h after addition of the E. coli K12 donor strain. The efficiency of transfer during the first 48 h was approximately 10 −6 transconjugants per donor. Inhibition of protozoan predation increased the number of transconjugants appearing in the soil, but the transfer efficiency per donor was not affected by the decreased predation. No transfer could be detected when the donor strain was washed and resuspended in saline before addition to the soil, but transconjugants were detected in this experiment when nutrients (LB) were supplemented after two days of incubation. Plasmid RP4 was maintained in the transconjugant soil bacteria throughout the experiment. The data presented here indicate that the indigenous bacteria in soil may serve as a sink for plasmidborne traits.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call