Abstract

BackgroundMolecular genetic studies of Bombyx mori have led to profound advances in our understanding of the regulation of development. Bombyx mori brain, as a main endocrine organ, plays important regulatory roles in various biological processes. Microarray technology will allow the genome-wide analysis of gene expression patterns in silkworm brains.ResultsWe reported microarray-based gene expression profiles in silkworm brains at four stages including V7, P1, P3 and P5. A total of 4,550 genes were transcribed in at least one selected stage. Of these, clustering algorithms separated the expressed genes into stably expressed genes and variably expressed genes. The results of the gene ontology (GO) and Kyoto encyclopedia of genes and genomes (KEGG) analysis of stably expressed genes showed that the ribosomal and oxidative phosphorylation pathways were principal pathways. Secondly, four clusters of genes with significantly different expression patterns were observed in the 1,175 variably expressed genes. Thirdly, thirty-two neuropeptide genes, six neuropeptide-like precursor genes, and 117 cuticular protein genes were expressed in selected developmental stages.ConclusionMajor characteristics of the transcriptional profiles in the brains of Bombyx mori at specific development stages were present in this study. Our data provided useful information for future research.

Highlights

  • Molecular genetic studies of Bombyx mori have led to profound advances in our understanding of the regulation of development

  • To provide new insights into activation of the ecdysis sequence during pupation and to better understand the regulating mechanisms during larval-to-pupal metamorphosis of silkworm, we investigated the gene expression profiles in the silkworm brain at selected stages day 7 of the fifth instar larva (V7), day 1 of the pupa (P1), day 3 of the pupa (P3), and day 5 of the pupa (P5) which are critical to such biological processes

  • Based on the criterion of signal intensity more than 800, 3,436, 3,048, 3,468, and 3,409 of genes were transcribed at V7, P1, P3, and P5, respectively

Read more

Summary

Introduction

Molecular genetic studies of Bombyx mori have led to profound advances in our understanding of the regulation of development. The silkworm, Bombyx mori, is a holometabolous insect that has four distinct life stages including embryo, larva, pupa, and moth. It is a model organism for Lepidoptera in molecular genetics and functional genomics and has greatly contributed to understanding of the mechanisms governing metamorphosis and diapause [1]. Studies related to the neuropeptide genes expression profiles in brains of silkworm will provide invaluable information. To provide new insights into activation of the ecdysis sequence during pupation and to better understand the regulating mechanisms during larval-to-pupal metamorphosis of silkworm, we investigated the gene expression profiles in the silkworm brain at selected stages V7, P1, P3, and P5 which are critical to such biological processes

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.