Abstract

The role of microalgae in wastewater remediation and metabolite production has been well documented, but the limitations of microalgae harvesting and low biomass production call for a more sustainable method of microalgae utilization. The current review gives an insight on how microalgae biofilms can be utilized as a more efficient system for wastewater remediation and as potential source of metabolite for pharmaceutical product production. The review affirms that the extracellular polymeric substance (EPS) is the vital component of the microalgae biofilm because it influences the spatial organization of the organisms forming microalgae biofilm. The EPS is also responsible for the ease interaction between organisms forming microalgae biofilm. This review restate the crucial role play by EPS in the removal of heavy metals from water to be due to the presence of binding sites on its surface. This review also attribute the ability of microalgae biofilm to bio-transform organic pollutant to be dependent on enzymatic activities and the production of reactive oxygen species (ROS). The review assert that during the treatment of wastewater, the wastewater pollutants induce oxidative stress on microalgae biofilms. The response of the microalgae biofilm toward counteracting the stress induced by ROS leads to production of metabolites. These metabolites are important tools that can be harness for the production of pharmaceutical products.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call