Abstract

The increasing levels of cadmium (Cd) pollution in agricultural soil reduces plant growth and yield. This study aims to determine the impact of green synthesized zinc oxide nanoparticles (ZnO-NPs) on the physiochemical activities, nutrition, growth, and yield of Zea mays L. under Cd stress conditions. For this purpose, ZnO-NPs (450 ppm and 600 ppm) synthesized from Syzygium aromaticum were applied through foliar spray to Z. mays and also used as seed priming agents. A significant decline in plant height (35.24%), biomass production (43.86%), mineral content, gas exchange attributes, and yield (37.62%) was observed in Cd-spiked plants compared to the control. While, 450 ppm ZnO-NPs primed seed increased plant height (18.46%), total chlorophyll (80.07%), improved ascorbic acid (25.10%), DPPH activity (26.66%), and soil mineral uptake (Mg+2 (38.86%), K+ (27.83%), and Zn+2 (43.68%) as compared to plants only spiked with Cd. On the contrary, the foliar-applied 450 ppm ZnO-NPs increased plant height (8.22%), total chlorophyll content (73.59%), ascorbic acid (21.39%), and DPPH activity (17.61%) and yield parameters; cob diameter (19.45%), and kernels numbers 6.35% enhanced compared to plants that were spiked only with Cd. The findings of the current study pave the way for safer and more cost-effective crop production in Cd-stressed soils by using green synthesized NPs and provide deep insights into the underlying mechanisms of NPs treatment at the molecular level to provide compelling evidence for the use of NPs in improving plant growth and yield.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.