Abstract

Boriding treatment was applied to AISI 1020 steel to improve its wear resistance. The samples were characterized by X-ray diffraction (XRD), scanning electron microscopy, Vickers microhardness testing, fracture toughness, and confocal microscopy. The microscale abrasive wear behavior was also investigated. SiO2 abrasive particles were used as abradant with slurry concentrations of 0.5 and 1.0g/cm3. Normal loads of 0.49 and 0.98N were used. Fe2B phase was identified in the boride layer via XRD analysis. The Fe2B layer was 169μm thick with a mean hardness of 1608±101 HV0.05 and fracture toughness of 5.35±1.43MPam1/2. A reduction in the hardness of the outermost surface of the boride layer was observed owing to the formation of a porous region. Boriding treatment improved the wear resistance of the steel substrate. Sliding abrasive wear was the main mechanism under all tested conditions. The presence of micro-rolling abrasion and fracture-based mechanisms was observed for untreated and borided samples, respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.