Abstract
The performance of the product components in application greatly depends on the morphological parameters and inherent capabilities of the material. In the present study, Al–ZrB2 composite is made out of powder metallurgy route. Incremental weight% (0, 2, 4 and 6 wt%) of ZrB2 were added into Al matrix to produce different composites. Composites were prepared by cold axial compaction followed by pressureless sintering at 550 °C for 1 h in controlled atmosphere (Ar gas). Hardness increased with the amount of ZrB2 in the composite. To enhance the properties further, composites were deformed at 25, 400 and 500 °C respectively. The size, shape and orientation of the grains in the deformed composites were analyzed and correlated with the mechanical properties. The mechanical adhesion of ZrB2 particle with the Al matrix was examined in different composites during different temperature conditions of deformation process. The fracture strain of the composites decreased with increase of ZrB2 in the composite.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have