Abstract

This work aims to facilitate the transition of micro-robotic deposition (μRD) technology from the research bench to a mass manufacturing environment. The bone scaffolding application is targeted; however, the evaluation process developed is applicable to multiple colloidal material systems, length scales, and structure architectures. A design of experiments (DoE) approach is used to develop statistical correlations between three manufacturing treatments (material calcination time, nozzle size, and deposition speed) and defined reliability metrics. All three selected treatments have a significant effect on structure quality. A longer material calcination time improves the deposition of internal features. Logically, a larger nozzle size decreases structural defects. However, an unexpected result is revealed by this study. Higher deposition speeds are shown to either significantly improve or have no effect on structure quality, permitting a decrease in manufacturing time without adverse consequences.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call