Abstract

BackgroundMicroRNAs (miRNAs) are novel biomarkers that are important in tumorigenesis and cancer treatment resistance. miR-451 is expressed in human papillary thyroid carcinoma (PTC) tissues and is associated with tumor progression. This study investigated the molecular mechanism associated with the effects of miR-451 on B-CPAP human PTC cells in vitro.Material/MethodsBinding of miRNAs to the 3′ untranslated region (3′UTR) of messenger RNA (mRNA) was determined with a luciferase reporter assay. miRNAs and plasmids were transfected into human PTC B-CPAP cells with Lipofectamine 2000 Transfection Reagent. Cell viability was tested with a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide assay. The levels of miRNAs and mRNA were determined with quantitative polymerase chain reaction and protein levels were analyzed with immunoblotting.ResultsmiR-451 bound to wild-type but not mutant 3′-UTR of activating transcription factor 2 (ATF2). MiR-451 mimics inhibited the growth of B-CPAP cells and reduced mRNA and protein levels in ATF2, whereas miR-451 inhibitors promoted the growth of B-CPAP cells and increased mRNA and protein levels in ATF2.ConclusionsmiR-451 directly bound to the 3′UTR of ATF2, decreased mRNA and protein levels in ATF2, and inhibited growth of B-CPAP cells. Our findings suggest that miR-451 may be a potential therapeutic target for PTC.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call