Abstract

Abstract We rely here on a non-smooth contact dynamics (NSCD) approach to treat particle collisions in a direct numerical simulation of a dense particulate flow. Interactions between particles are considered by a non-smooth formulation of particle dynamics at the microscopic scale, which enables one to straightforwardly implement complex contact laws. The hydrodynamic coupling is achieved by a distributed Lagrange multiplier/fictitious domain (DLM/FD) method. As a preliminary step, the relevance of our NSCD-DLM/FD method is assessed by comparing results of 2D sedimentation simulations with those obtained with a usual molecular dynamics collision model. Then, we use it to investigate how a fully immersed granular packing collapses depending on its initial particle volume fraction, providing clues on the micro-rheology of dense particulate flows.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.