Abstract

Recent experiments have shown that when a dense layer of solid particles surrounding a high-energy reactive material is explosively dispersed, the particles cluster locally leading to jetlike patterns. The formation of these coherent structures has yet to be fully understood and is believed to have its origin in the early moments of the explosive dispersal. This paper focuses on the early moments of an explosive dispersal of particles. In particular, the effect of initial perturbations on both the gas and particulate phase is investigated, considering heavy particles with a low initial particle volume fraction. Two-dimensional simulations are carried out, and results suggest that a distinctive heterogeneity in the form of a single wavelength perturbation in the rapidly expanding detonation products does not have a significant impact on the early evolution of neither the gas phase nor the cloud of particles. In contrast, the equivalent distinctive heterogeneity in the initial particle volume fraction distribution lingers for the duration of our simulations. Developing instabilities in the gas phase and at the inner- and outer-most front of the particle bed display a dominant wavelength equal to the wavelength of the initial perturbation in the particle volume fraction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.