Abstract

Removal of the toxic selenium compounds, selenite (SeO32-) and selenate (SeO42-), from contaminated water is imperative for environmental protection in both developing and industrialized countries. Providing high selectivity adsorbents to the target ions is a big challenge. Here we report that micro sphere-like δ-Bi2O3 (MS-δ-Bi2O3) with surface oxygen vacancy defects can capture hypertoxic SeOx2- anions from aqueous solutions with superior capacity and fast uptake rate. High capture selectivity to SeO32- anions is observed, since the O atoms of SeO32- anions fill the oxygen vacancies on the (111) facet of δ-Bi2O3 forming a stable complex structure. This mechanism is distinctly different from other known mechanisms for anion removal, and implies that we may utilize surface defects as highly efficient and selective sites to capture specific toxic species. Thus, we present a new route here to design superior adsorbents for toxic ions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.