Abstract
Automatic recognition of chemical structures from molecular images provides an important avenue for the rediscovery of chemicals. Traditional rule-based approaches that rely on expert knowledge and fail to consider all the stylistic variations of molecular images usually suffer from cumbersome recognition processes and low generalization ability. Deep learning-based methods that integrate different image styles and automatically learn valuable features are flexible, but currently under-researched and have limitations, and are therefore not fully exploited. MICER, an encoder-decoder-based, reconstructed architecture for molecular image captioning, combines transfer learning, attention mechanisms and several strategies to strengthen effectiveness and plasticity in different datasets. The effects of stereochemical information, molecular complexity, data volume and pre-trained encoders on MICER performance were evaluated. Experimental results show that the intrinsic features of the molecular images and the sub-model match have a significant impact on the performance of this task. These findings inspire us to design the training dataset and the encoder for the final validation model, and the experimental results suggest that the MICER model consistently outperforms the state-of-the-art methods on four datasets. MICER was more reliable and scalable due to its interpretability and transfer capacity and provides a practical framework for developing comprehensive and accurate automated molecular structure identification tools to explore unknown chemical space. https://github.com/Jiacai-Yi/MICER. Supplementary data are available at Bioinformatics online.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.