Abstract

Pre-trained encoders are general-purpose feature extractors that can be used for many downstream tasks. Recent progress in self-supervised learning can pre-train highly effective encoders using a large volume of unlabeled data, leading to the emerging encoder as a service (EaaS). A pre-trained encoder may be deemed confidential because its training often requires lots of data and computation resources as well as its public release may facilitate misuse of AI, e.g., for deepfakes generation. In this paper, we propose the first attack called StolenEncoder to steal pre-trained image encoders. We evaluate StolenEncoder on multiple target encoders pre-trained by ourselves and three real-world target encoders including the ImageNet encoder pre-trained by Google, CLIP encoder pre-trained by OpenAI, and Clarifai's General Embedding encoder deployed as a paid EaaS. Our results show that the encoders stolen by StolenEncoder have similar functionality with the target encoders. In particular, the downstream classifiers built upon a target encoder and a stolen encoder have similar accuracy. Moreover, stealing a target encoder using StolenEncoder requires much less data and computation resources than pre-training it from scratch. We also explore three defenses that perturb feature vectors produced by a target encoder. Our evaluation shows that these defenses are not enough to mitigate StolenEncoder.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.